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A lattice Boltzmann method (LBM) for an isothermal binary miscible fluid mixture
is proposed. The binary miscible fluid mixture is assumed to be composed of A and
B species where the fraction of B species is much smaller than that of A species. The
asymptotic theory proposed by Sone [in Rarefied Gas Dynamics, edited by D. Dini
(Editrice Tecnico Scientifica, Pisa, 1971), Vol. 2, p. 737] is applied to the present
LBM model and the convection–diffusion equation for component B is obtained. A
diffusion problem is calculated and the validity of the proposed model is shown. Also,
the present method can be applied to thermal fluid systems, in which the concentration
field of component B is regarded as the temperature field of component A, and a
buoyancy force proportional to the temperature difference is included. Rayleigh–
Bénard convection is numerically simulated. The results indicate that the present
LBM is useful for the simulation of fluid flows with heat transfer as well as mass
transfer. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Recently, the lattice Boltzmann method (LBM) [1–4] has been used for many kinds
of simulations of incompressible viscous flows. In particular, LBM has been successfully
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applied to problems of multiphase and multicomponent fluid flows [5–10]. Gunstensen
et al. [5] developed a multicomponent LBM based on the two-component lattice gas model
proposed by Rothman and Keller [6]. Holme and Rothman [7] extended the method to reduce
the diffusivity in a miscible two-component system. Flekkøy [8] introduced another two-
component LBM model composed of two miscible fluids. Shan and Doolen [9, 10] proposed
a multicomponent LBM model including interparticle interaction and external forces.

On the other hand, LBM has also been applied to problems of fluid flows, including
thermal effects. In general, however, the simulation of thermal fluid systems by LBM has
not achieved the same success as that of isothermal flows. For example, McNamara et al.
[11] developed a three-dimensional multispeed thermal LBM. While their method gives
accurate results, they pointed out that the numerical stability should be improved. Most
previous thermal LBM models [11–14] are based on such a multispeed approach, in which
additional particle speeds are needed to obtain the energy equation at the macroscopic level.

As an alternative approach, Shan [15] carried out numerical simulations of Rayleigh–
Bénard convection by using the previously developed two-component LBM. In his method,
the density field of the second component is used to simulate the temperature field by
taking advantage of the formal analogy between heat and mass transfer. He et al. [16] also
developed a novel thermal LBM model based on a similar approach, in which an independent
distribution function for internal energy is introduced to simulate the temperature field.
These models are numerically more stable than that of the multispeed thermal LBMs. In
both models, however, the equilibrium distribution function for the temperature contains
the terms of second order in flow velocity. Since the convection–diffusion equation for the
temperature has no terms of second order in flow velocity, it is sufficient to take account
of the terms up to first order in flow velocity [17]. Thus there is a possibility of simplifying
their models.

In the present paper, we first propose an LBM for an isothermal binary miscible fluid
mixture. Next we apply the asymptotic theory proposed by Sone [18–20] and Sone and
Aoki [21] to the present LBM model and obtain the convection–diffusion equation for the
diffusing component. Then we calculate a diffusion problem to demonstrate the validity of
the proposed method. Finally we apply the present LBM to thermal fluid systems and carry
out numerical simulations of Rayleigh–Bénard convection.

2. THE LATTICE BOLTZMANN METHOD FOR A BINARY

MISCIBLE FLUID MIXTURE

2.1. Basic Equation

Hereafter, nondimensional variables defined in Appendix A are used, but the circum-
flex representing “nondimensional” is omitted for simplicity. We employ the 15-velocity
model [4] to explain the present method. The 15-velocity model has the following velocity
vectors:

[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15]

=




0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1
0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1


. (1)



LBM FOR A BINARY MISCIBLE FLUID MIXTURE 203

Here, we assume a binary miscible fluid mixture of A and B species under the condition that
the fraction of B species is much smaller than that of A species. Under this condition, the
effect of A–B collisions can be neglected compared to A–A collisions. Also, the effect of B–
B collisions can be neglected in comparison with B–A collisions. Therefore, the evolution
of the particle distribution function f�i (x, t) of � species (� = A, B) with velocity ci at the
point x and at time t is computed by the equation

f�i (x + ci�x, t + �t) − f�i (x, t) = − 1

��

[
f�i (x, t) − f eq

�Ai (x, t)
]

for i = 1, 2, 3, . . . , 15, � = A, B, (2)

where f eq
�Ai is an equilibrium distribution function for � species, �� is a dimensionless single

relaxation time and is of O(1), �x is a spacing of the cubic lattice, and �t is a time step
during which the particles travel the lattice spacing. It is noted that �t = Sh�x where
Sh(=U/c) is the Strouhal number.

The density � A of component A, the concentration �B of component B, and the flow
velocity uA of component A are defined in terms of the particle distribution function as
follows:

�� =
15∑

i=1

f�i for � = A, B, (3)

uA = 1

� A

15∑
i=1

f Ai ci . (4)

As for the equilibrium distribution function for component A, it is noted that Eq. (2) for
� = A has the same form as a single-component isothermal LBM. Thus, the equilibrium
distribution function f eq

AAi is given by [4]

f eq
AAi = Ei � A

[
1 + 3ci · uA + 9

2
(ci · uA)2 − 3

2
uA · uA

]
for i = 1, 2, 3, . . . , 15, (5)

where E1 = 2/9, Ei = 1/9 for i = 2, 3, . . . , 7, and Ei = 1/72 for i = 8, 9, . . . , 15. More-
over, in this model the pressure pA of component A is related to the density � A by [22]

pA = 1

3
� A. (6)

As for the equilibrium distribution function for component B, on the other hand, we use
the following equilibrium distribution function, which contains the terms up to first order
in flow velocity:

f eq
BAi = Ei �B(1 + 3ci · uA) for i = 1, 2, 3, . . . , 15. (7)

The above distribution function is simpler than that of [15, 16]. A similar equilibrium
distribution function has been proposed in [17] with the hexagonal seven-velocity model, but
the accuracy of the method is not presented in detail. The appropriateness and the accuracy
of the above equilibrium distribution function are verified theoretically and numerically in
the following sections.
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2.2. Asymptotic Analysis

Here, we are interested in the case of small Knudsen number with finite Reynolds number.
Since Mach number Ma = U/c, Reynolds number Re = UL/� (� is the kinematic viscosity
of fluid), and Knudsen number Kn are related as Ma ∼ KnRe, it follows that Ma is of the
same order of smallness as Kn in the case of finite Reynolds number. In addition, since
Sh = U/c = Ma, the Strouhal number Sh is also of the order Kn. It is also noted that
�x is assumed to be of the same order as Kn. Considering this ordering, we carry out
the asymptotic analysis for small Knudsen numbers according to [18–21]. As in [22], it is
found that using Eqs. (2)–(6) for � = A we can obtain the macroscopic flow velocities and
pressure gradient of component A for incompressible fluid with relative errors of O(ε2),
where ε is a modified Knudsen number, which is of the same order as �x .

Hereafter, we focus on the derivation of the governing equation for component B. First,
performing a Taylor expansion of Eq. (2) for � = B up to O[(�x)4] and dividing it by �x ,
we have

(
Sh

∂

∂t
+ ci · ∇

)
fBi + 1

2
�x

(
Sh

∂

∂t
+ ci · ∇

)2

fBi + 1

6
(�x)2(ci · ∇)3 fBi + O[(�x)3]

= − 1

�B�x

(
fBi − f eq

BAi

)
. (8)

Next, we assume that the deviation of the distribution function from its equilibrium state
at rest with the local concentration is of the same order as �x and put fBi in the form of
series expansion of ε.

fBi = Ei
(
� (0)

B + ε f (1)
Bi + ε2 f (2)

Bi + ε3 f (3)
Bi + · · · ) for i = 1, 2, 3, . . . , 15. (9)

Corresponding to Eq. (9), the macroscopic variables are also expanded.

�B = � (0)
B + ε� (1)

B + ε2� (2)
B + ε3� (3)

B + · · · , (10a)

uA = εu(1)
A + ε2u(2)

A + ε3u(3)
A + · · · , (10b)

where

� (m)
B =

15∑
i=1

Ei f (m)
Bi for m = 1, 2, 3, . . . . (11)

It should be noted that the expansion of the flow velocity begins with the term of the order
ε, since Ma is of the order Kn. Also, the equilibrium distribution function is expanded.

f eq
BAi = Ei

(
f eq(0)
BAi + ε f eq(1)

BAi + ε2 f eq(2)
BAi + ε3 f eq(3)

BAi + · · · ) for i = 1, 2, 3, . . . , 15, (12)

where

f eq(0)
BAi = � (0)

B , (13a)

f eq(1)
BAi = � (1)

B + 3� (0)
B ci · u(1)

A , (13b)

f eq(2)
BAi = � (2)

B + 3� (1)
B ci · u(1)

A + 3� (0)
B ci · u(2)

A , (13c)

f eq(3)
BAi = � (3)

B + 3� (2)
B ci · u(1)

A + 3� (1)
B ci · u(2)

A + 3� (0)
B ci · u(3)

A . (13d)
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We consider a moderately varying solution [∂ f (m)
Bi /∂t = O( f (m)

Bi ) and ∂ f (m)
Bi /∂x� =

O( f (m)
Bi ) with m = 1, 2, 3, . . . and � = x, y, z (subscript � represents Cartesian coordi-

nates and the summation convention is used)] of Eq. (2). Substituting Eqs. (9) and (12) into
Eq. (8), we obtain the following simultaneous equations governing the component functions
f (m)
Bi (m = 1, 2, 3, . . .) of the velocity distribution functions fBi.

f (1)
Bi = f eq(1)

BAi − �B�x

ε
ci · ∇� (0)

B , (14)

f (2)
Bi = f eq(2)

BAi − �B�x

ε
ci · ∇ f (1)

Bi − �B�x

ε

[
Sh

ε
∂

∂t
+ 1

2

�x

ε
(ci · ∇)2

]
� (0)

B , (15)

f (3)
Bi = f eq(3)

BAi − �B�x

ε
ci · ∇ f (2)

Bi − �B�x

ε

[
Sh

ε
∂

∂t
+ 1

2

�x

ε
(ci · ∇)2

]
f (1)
Bi

− �B

(
�x

ε

)2

(ci · ∇)

[
Sh

ε
∂

∂t
+ 1

6

�x

ε
(ci · ∇)2

]
� (0)

B , (16)

.

.

.

These can also be written in the form of linear algebraic equations.

f (m)
Bi −

15∑
j=1

E j f (m)
B j = Ih(m)

i for m = 1, 2, 3, . . . , (17)

where Ih(m)
i represents the inhomogeneous terms given by

Ih(1)
i = 3� (0)

B ci · u(1)
A − �B�x

ε
ci · ∇� (0)

B , (18a)

Ih(2)
i = 3� (1)

B ci · u(1)
A + 3� (0)

B ci · u(2)
A

− �B�x

ε
ci · ∇ f (1)

Bi − �B�x

ε

[
Sh

ε
∂

∂t
+ 1

2

�x

ε
(ci · ∇)2

]
� (0)

B , (18b)

Ih(3)
i = 3� (2)

B ci · u(1)
A + 3� (1)

B ci · u(2)
A + 3� (0)

B ci · u(3)
A

− �B�x

ε
ci · ∇ f (2)

Bi − �B�x

ε

[
Sh

ε
∂

∂t
+ 1

2

�x

ε
(ci · ∇)2

]
f (1)
Bi

− �B

(
�x

ε

)2

(ci · ∇)

[
Sh

ε
∂

∂t
+ 1

6

�x

ε
(ci · ∇)2

]
� (0)

B , (18c)

.

.

.

Equation (17) is an inhomogeneous linear algebraic equation and has the same coefficient
matrix in spite of m. As shown in Appendix B, the solvability conditions for Eq. (17) are
as follows:

15∑
i=1

Ei Ih(m)
i = 0 for m = 1, 2, 3, . . . . (19)
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The solvability condition for m = 1 is trivially satisfied. From the solvability condition (19)
for m = 2 we get

Sh

ε
∂� (0)

B

∂t
+ u(1)

A�

∂� (0)
B

∂x�
= 1

3

(
�B − 1

2

)
�x

ε
∂2� (0)

B

∂x2
�

. (20)

From the solvability condition (19) for m = 3 we get

Sh

ε
∂� (1)

B

∂t
+ u(1)

A�

∂� (1)
B

∂x�
+ u(2)

A�

∂� (0)
B

∂x�
= 1

3

(
�B − 1

2

)
�x

ε
∂2� (1)

B

∂x2
�

. (21)

Multiplying Eq. (20) by ε and Eq. (21) by ε2 and taking the summation of the two equations,
we obtain

Sh
∂

∂t

(
� (0)

B + ε� (1)
B

) + εu(1)
A�

∂

∂x�

(
� (0)

B + ε� (1)
B

) + ε2u(2)
A�

∂� (0)
B

∂x�

= 1

3

(
�B − 1

2

)
�x

∂2

∂x2
�

(
� (0)

B + ε� (1)
B

)
. (22)

Equation (22) corresponds to the convection–diffusion equation for component B in a binary
miscible fluid mixture. Therefore, it is found that using Eqs. (2)–(4) and (7) for � = B we
can obtain the concentration of component B in a binary miscible fluid mixture with relative
errors of O(ε2).

The dimensionless kinematic viscosity � of the fluid and the dimensionless mass diffu-
sivity DBA in the binary miscible fluid mixture are given by [22]

� = 1

3

(
�A − 1

2

)
�x, (23)

DBA = 1

3

(
�B − 1

2

)
�x . (24)

Then the Schmidt number Sc becomes

Sc = �

DBA
= 2�A − 1

2�B − 1
. (25)

2.3. Numerical Results

To demonstrate the validity of the proposed method, we calculate a steady diffusion
problem between two parallel walls. Here we use the two-dimensional nine-velocity model
[4, 23] for simplicity. The nine-velocity model has the following velocity vectors: c1 =
0; ci = [cos(�(i − 2)/2), sin(�(i − 2)/2)] for i = 2, 3, 4, 5; and ci = [cos(�(i − 11

2 )/2),

sin(�(i − 11
2 )/2)] for i = 6, 7, 8, 9. The basic theory and equations for the nine-velocity

model are the same as those for the 15-velocity model except that the coefficients Ei are
E1 = 4/9, Ei = 1/9 for i = 2, 3, 4, 5, and Ei = 1/36 for i = 6, 7, 8, 9.

A square domain with the sides of length L is divided into square lattices with the spacing
of �x . The lower and upper walls are located at y = 0 and 1, respectively. The two walls are
assumed to be porous and a constant normal flow vA0 of component A is injected through
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the lower wall and removed from the upper wall. The concentration of component B at the
lower and upper walls is maintained with �BL and �BU, respectively. In this problem, �BU is
assumed higher than �BL; it follows that B species diffuses counter to the flow of A species.
The governing equation for this problem becomes

vA0
d
B

dy
= DBA

d2
B

dy2
, (26)

where 
B is a normalized concentration defined as follows:


B = �B − �BL

�BU − �BL
. (27)

The analytical solution 
∗
B is given by


∗
B = exp(vA0 y/DBA) − 1

exp(vA0/DBA) − 1
. (28)

In the following calculations, we keep the condition of vA0/DBA = 4. The periodic bound-
ary condition is imposed in the x-direction. On the lower and upper walls the boundary
condition with constant concentration of component B is used (see Appendix C). We car-
ried out calculations with �x = 1/20, 1/40, and 1/80 and with �B = 1.1, 1.4, and 1.7.
Figure 1 shows the calculated concentration profile with �x = 0.05 and �B = 1.1. The
solid line and the closed circles indicate the analytical solution and the calculated results,
respectively. It is seen that the results agree well with the analytical solution. Next, the
errors of the calculated results from the analytical solution with various �x and �B are
examined. As stated in [22], the errors in this problem are proportional to (�x)2 alone
as long as vA0/DBA is kept at a constant value. Table I presents the error norms Er1 =
�y |
B − 
∗

B |/�y |
∗
B | and Er2 = √

�y(
B − 
∗
B)2/

√
�y(


∗
B)2, where the sums are

taken over the same 21 nodes between the walls for all cases. It is clearly found that the er-
rors decrease in proportion to (�x)2 regardless of �B and the present LBM is a second-order
scheme.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Present Calculation

Exact

y

ΠB

FIG. 1. Calculated concentration profile 
B of a binary fluid diffusion problem between parallel walls with
�x = 0.05 and �B = 1.1.
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TABLE I

Error Norms of Diffusion Problem between Two Parallel Walls

�x �B Er1 Er2

0.05 1.1, 1.4, and 1.7 2.254 × 10−3 1.790 × 10−3

0.025 1.1, 1.4, and 1.7 5.617 × 10−4 4.459 × 10−4

0.0125 1.1, 1.4, and 1.7 1.403 × 10−4 1.114 × 10−4

3. APPLICATION TO THERMAL FLUID SYSTEMS

3.1. Basic Equation

The present LBM for the binary miscible fluid mixture can also be applied to thermal
fluid systems by taking advantage of the formal analogy between heat and mass transfer. In
the following, the concentration field of component B is regarded as the temperature field
of component A and the subscript B of the variables for component B is replaced by T ,
denoting temperature. As for the motion of component A, the Boussinesq approximation
is used for the gravitational term and a buoyancy force proportional to the temperature
difference is included. Here the buoyancy force is assumed to be acting in the y-direction
alone. Then the evolution of particle distribution functions for fluid A and temperature T
is written as [24]

f�i (x + ci�x, t + �t) − f�i (x, t)

= − 1

��

[
f�i (x, t) − f eq

�Ai (x, t)
] + 3Ei g�(T − T ∗)ciy�x	�A

for i = 1, 2, 3, . . . , 15, � = A, T, (29)

where g is the gravitational acceleration, � is the volumetric expansion coefficient, T ∗ is
a reference temperature, and 	�A is the Kronecker delta. Note that g� is of O(ε2). The
equilibrium distribution functions f eq

AA and f eq
TA are given by Eqs. (5) and (7), respectively.

Also, the density � , the temperature T (corresponding to �B), the flow velocity u, and the
pressure p of the fluid are defined as Eqs. (3), (4), and (6).

3.2. Governing Equation

Here, the governing equations for the thermal fluid systems are derived. As in the case of
the LBM for the binary miscible fluid mixture, the asymptotic analysis is applied to Eq. (29).
It is shown from the results that u = εu(1) + ε2u(2) + O(ε3), p = ε2 p(2) + ε3 p(3) + O(ε4),
and T = T (0) + εT (1) + O(ε2) satisfy

∂u�

∂x�
= 0, (30)

Sh
∂u�

∂t
+ u	

∂u�

∂x	
= − ∂p

∂x�
+ 1

3

(
�A − 1

2

)
�x

∂2u�

∂x2
	

+ g�(T − T ∗)	� y, (31)

Sh
∂T

∂t
+ u�

∂T

∂x�
= 1

3

(
�T − 1

2

)
�x

∂2T

∂x2
�

, (32)
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where 	� y is the Kronecker delta. It is noted that the summation convention is used for the
subscripts � and 	 (�,	 = x, y, z) in Eqs. (30)–(32). Equations (30)–(32) correspond to the
continuity equation, the Navier–Stokes equations, and the convection–diffusion equation
for the temperature for incompressible fluid, respectively.

The dimensionless kinematic viscosity � and the dimensionless thermal diffusivity 


(corresponding to DBA) of the fluid are given by Eqs. (23) and (24), respectively. Then the
Prandtl number Pr and the Rayleigh number Ra are determined as

Pr = �



= 2�A − 1

2�T − 1
, (33)

Ra = 36g��T

(2�A − 1)(2�T − 1)(�x)2
, (34)

where �T is a characteristic temperature difference.

3.3. Numerical Results

As a typical example of thermal fluid systems, Rayleigh–Bénard convection is calculated
by the present LBM. For simplicity, the nine-velocity model is also used. A rectangular
domain with height L and width 2L is divided into square lattices with the spacing of �x .
The temperature TL on the lower wall at y = 0 is kept higher than the temperature TU on
the upper wall at y = 1. T ∗ is given by [15, 16]

T ∗ = TL − y�T, (35)

where �T = TL − TU. Note that Eq. (35) leads to a cancellation of the effect of hydrostatic
pressure due to the buoyancy force. Hence, in the conductive state the buoyancy force
vanishes and the pressure field is homogeneous [15, 16]. The periodic boundary condition
is used in the x-direction. The no-slip boundary condition with constant temperature is used
on the lower and upper walls (see Appendix C with vA0 = 0). Computational conditions
are �x = 1/50 and Pr = 0.71, and the other parameters are changed so that the Rayleigh
number Ra ranges from 1,650 to 100,000.

We first evaluate the critical Rayleigh number Rac. The calculations are started from
the static conductive state at several different Rayleigh numbers close to Rac. An initial
small perturbation in a sine wave is applied to the temperature field. The amplitude of
the sine wave is set to be 5 × 10−3 for all cases. Figure 2 shows the time histories of the
maximum velocities in the y-direction at Ra = 1650, 1680, 1700, 1720, 1750, and 1800.
The initial disturbance is found to either grow or decay exponentially according to the
Rayleigh numbers. Then the growth rate, which is defined as the rate of increase in the
maximum velocity in the y-direction during one time step, is calculated and interpolated to
obtain the Rayleigh number corresponding to zero growth rate. Figure 3 shows the calculated
growth rates plotted against the Rayleigh numbers. It should be noted that negative value
of the growth rate indicates the rate of decrease in the maximum vertical velocity. In Fig. 3,
the solid straight line is drawn through the data points using the least-squares fitting and
the intersection with the horizontal axis gives the critical Rayleigh number. The calculated
critical Rayleigh number is 1708.48 and agrees well, within 0.042%, with the theoretical
value of 1707.76 obtained by linear stability theory [25].
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FIG. 2. Time histories of the maximum vertical velocity at different Rayleigh numbers close to the critical
value of Rac.

We next present the calculated results at higher Rayleigh numbers. Figure 4 shows typical
velocity vectors and temperature fields in final steady states at Ra = 5,000, 20,000, and
50,000. In Fig. 4, the length of each velocity vector is normalized by the maximum velocity
in the y-direction at Ra = 50,000. It is seen that as the Rayleigh number increases, the
mixing of the hot and cold fluids is enhanced and the temperature gradients near the lower
and upper walls become steeper. It is found that our results are qualitatively reasonable
compared to the results by Shan [15] and by He et al. [16]. The Nusselt number can be
calculated by the equation [16]

Nu = 1 + 〈uy T 〉

�T

, (36)

where uy is the flow velocity in the y-direction and 〈·〉 denotes the average over the whole
flow domain. Figure 5 shows the calculated relationship between the Nusselt number and
the Rayleigh number. In Fig. 5, the results by Clever and Busse [26] and the empirical

FIG. 3. Growth rates of the instability against the Rayleigh numbers. The closed circles indicate the results
obtained from the time histories of the maximum vertical velocity, and the solid straight line is drawn through the
data points using the least-squares fitting.
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uy,max

uy,max
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FIG. 4. Calculated velocity vectors (left) and normalized temperature (T − TU)/(TL − TU), where TL and TU

are the temperatures on the lower and upper walls, respectively (right), in final steady states at different Rayleigh
numbers. (a) Ra = 5,000, (b) Ra = 20,000, and (c) Ra = 50,000. uy,max is the maximum velocity in the y-direction
at Ra = 50,000 and the temperature contour interval is 0.05.
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FIG. 5. Calculated relationship between the Nusselt number and the Rayleigh number. The results by Clever
and Busse [26] and the empirical formula Nu = 1.56(Ra/Rac)

0.296 [16], where Rac is the critical Rayleigh number,
are also shown for comparison.
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formula Nu = 1.56(Ra/Rac)
0.296 [16] are also shown for comparison. It is seen that our

results agree fairly well with those by Clever and Busse at various Rayleigh numbers up to
100,000. Shan [15] and He et al. [16] also calculate the same problem, but their calculations
slightly underestimate the heat transfer at Rayleigh numbers higher than 20,000. Therefore,
it is found that the present LBM is more accurate than their thermal LBMs at high Rayleigh
numbers.

4. CONCLUDING REMARKS

We have proposed an LBM for an isothermal binary miscible fluid mixture. Applying the
asymptotic theory proposed by Sone [18–20] and Sone and Aoki [21] to the present LBM,
we found that the concentration of the diffusing component in the mixture can be obtained
with relative errors of O(ε2), where ε is a modified Knudsen number, which is of the same
order as the lattice spacing. The proposed LBM can be applied to thermal fluid systems. In
two problems, diffusion between two parallel walls and Rayleigh–Bénard convection, we
found that the present LBM is useful for the simulation of fluid flows with heat and mass
transfer.

APPENDIX A: DEFINITION OF NONDIMENSIONAL VARIABLES

As in [22], we use the following nondimensional variables defined by a characteristic
length L , a characteristic particle speed c, a characteristic time scale t0 = L/U , where U
is a characteristic flow speed, a reference density � A0, a reference concentration �B0, and a
reference temperature T0.

ĉi = ci/c, x̂ = x/L , t̂ = t/t0,

f̂ Ai = f Ai/� A0, f̂ Bi = fBi/�B0,

�̂ A = � A/� A0, �̂B = �B/�B0,

ûA = uA/c, p̂A = pA/(� A0c2),

ĝ = gL/c2, �̂ = �T0, T̂ = T/T0,

�̂ = �/(cL), D̂BA = DBA/(cL), 
̂ =
/(cL),




(A.1)

where the subscripts A and B represent the variables for A and B species, respectively. The
dimensional variables in Eq. (A.1) are as follows: ci is the particle velocity, x is the coordi-
nates, t is the time, f Ai and fBi are the particle distribution functions, � A is the density, �B

is the concentration, uA is the flow velocity, pA is the pressure, g is the gravitational accel-
eration, � is the volumetric expansion coefficient, T is the temperature, � is the kinematic
viscosity, DBA is the mass diffusivity, and 
 is the thermal diffusivity.

APPENDIX B: SOLVABILITY CONDITIONS OF EQ. (17)

The linear algebraic Eq. (17) can be written as

Ay = b, (B.1)
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with

A = 1

72




56 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 −1 −1 −1 −1
−16 64 −8 −8 −8 −8 −8 −1 1 −1 −1 −1 −1 −1 −1
−16 −8 64 −8 −8 −8 −8 −1 −1 −1 −1 −1 −1 −1 −1
−16 −8 −8 64 −8 −8 −8 −1 −1 −1 −1 −1 −1 −1 −1
−16 −8 −8 −8 64 −8 −8 −1 −1 −1 −1 −1 −1 −1 −1
−16 −8 −8 −8 −8 64 −8 −1 −1 −1 −1 −1 −1 −1 −1
−16 −8 −8 −8 −8 −8 64 −1 −1 −1 −1 −1 −1 −1 −1
−16 −8 −8 −8 −8 −8 −8 71 −1 −1 −1 −1 −1 −1 −1
−16 −8 −8 −8 −8 −8 −8 −1 71 −1 −1 −1 −1 −1 −1
−16 −8 −8 −8 −8 −8 −8 −1 −1 71 −1 −1 −1 −1 −1
−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 71 −1 −1 −1 −1
−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 71 −1 −1 −1
−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 −1 71 −1 −1
−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 −1 −1 71 −1
−16 −8 −8 −8 −8 −8 −8 −1 −1 −1 −1 −1 −1 −1 71




,

(B.2)

where

y = [
f (m)
1 , f (m)

2 , f (m)
3 , f (m)

4 , f (m)
5 , f (m)

6 , f (m)
7 , f (m)

8 , f (m)
9 , f (m)

10 ,

f (m)
11 , f (m)

12 , f (m)
13 , f (m)

14 , f (m)
15

]T
with m ≥ 1, (B.3)

and

b = [
Ih(m)

1 , Ih(m)
2 , Ih(m)

3 , Ih(m)
4 , Ih(m)

5 , Ih(m)
6 , Ih(m)

7 , Ih(m)
8 , Ih(m)

9 , Ih(m)
10 ,

Ih(m)
11 , Ih(m)

12 , Ih(m)
13 , Ih(m)

14 , Ih(m)
15

]T
with m ≥ 1. (B.4)

It is easily verified that rank(AT) = 14 and the equation ATy′ = 0 has one nontrivial solu-
tion y′ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T. Also, multiplying each row vector of the
matrix A by Ei , we get a symmetric matrix. Thus, from the fundamental theorem of linear
algebra [27] we obtain the solvability conditions Eq. (19) for Eq. (17).

APPENDIX C: BOUNDARY CONDITION

We present the boundary condition for component B with constant concentration at a
wall. On the lower wall at y = 0, for example, fB3, fB6, and fB7 are unknown. As in [28],
the unknown distribution functions are assumed to be the equilibrium distribution functions
given by Eq. (7) with a parameter � ′

B , as follows.

fBi = Ei �
′
B (1 + 3vA0) for i = 3, 6, 7, (C.1)

where vA0 is the flow velocity of component A in the y-direction. The unknown parameter
� ′

B is determined so that the concentration of component B at the wall is equal to a given
value of �BL. Substituting Eq. (C.1) and the known distribution functions into Eq. (3) for
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� = B, the unknown parameter � ′
B is specified as follows:

� ′
B = 12

2 + 3vA0
(�BL − fB1 − fB2 − fB4 − fB5 − fB8 − fB9) . (C.2)

The same method is used on the upper wall at y = 1.
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